Skype for Linux – Using corporate proxy

Since, unfortunately, I some times need to use Skype on Linux and because I’m behind a corporate proxy server, Skype doesn’t work or accept, at least on Arch Linux running KDE Plasma desktop, the system proxy settings.

Setting the http_proxy/https_proxy variables have no effect on the Electron (I think…) Skype based app.

Anyway the solution for this is quite simple: Just install ProxyChains.

[pcortex@desktop:~]$ sudo pacman -S proxychains-ng

After installing, edit the file /etc/proxychains.conf and under the [ProxyList] add your proxy:

http  3128  my_proxy_username  my_proxy_password

Save the file, and now just run skype with the following command:

[fpcortex@desktop:~]$ proxychains skypeforlinux

Making now the test call works.


Node-Red: Checking network service port status + UI status indicator

This post is about how to do two simple things using Node-Red:

  1. Check if network service on the machine running Node-Red is available by checking the corresponding listening port.
  2. The Node-Red UI doesn’t have a status indicator available, so I’ve built one

The only limitation on the following solution is that it only tests for services for services that are running on the same server where Node-Red is also running.


We need to install the Is Port Available NPM Module and madke it available into our Node-Red instance.
For doing so in Linux we must do the following:

root@server:~# cd .node-red/
root@server:~/.node-red# node i --save is-port-available

We need now to make this node module available to Node-Red by editing the settings.js file:

root@server:~/.node-red# vi settings.js

Add the module to the global context on the function named functionGlobalContext:

    functionGlobalContext: {
        // os:require('os'),
        // octalbonescript:require('octalbonescript'),
        // jfive:require("johnny-five"),
        // j5board:require("johnny-five").Board({repl:false})


You might have other modules configured, so we need to add the above portavail:require(‘is-port-available’) line to that list preceed by a comma.

Restarting now Node-Red makes the module available to the flows.

The testing flow

We can use now the global context object portavail to use the is-port-available module.

For example for testing the InfluxDB server port (1086/TCP) we can write the following function:

    // Instantiate locally on the flow the is-port-available module
    const isPortAvailable =;

    msg.payload = {};   // Zero out the message. Not really necessary
    var port = 1086; // Replace this with your service port number. In this case 1086 is the Influx DB port
    isPortAvailable(port).then( status => {
        if(status) {
            //console.log('Port ' + port + ' IS available!');
            msg.payload = {'InfluxDB':false,"title":"InfluxDB","color":"red"};   // The port is available, hence the server is NOT running
        } else {
            //console.log('Port ' + port + ' IS NOT available!');
            //console.log('Reason : ' + isPortAvailable.lastError);
            msg.payload = {'InfluxDB':true,"title":"InfluxDB","color":"green"};    // The port is not available, so the server MIGHT be running

    // Note that we DO NOT return a message here since the above code is asynchronous and it will emit the message in the future. 

Since the test is using promises, Node-Red will continue executing without waiting for the test response (the isPortAvailable(port) code ). So we do not send any message further on the normal Node-Red execution flow (hence there is no return msg; object) and the message is only emitted when the promise fulfils. When that happens we just send the message with the node.send(msg) statement.

The message payload can be anything, being the only important properties the title and color that are used for creating the UI status indicator.

The status indicator is a simple Angularjs template that displays the title and a status circle with the chosen colour.

Since pasting CSS and HTML code in WordPress is recipe to disaster, the template code can be accessed on this gist or on the complete test flow below:

[{"id":"1f506795.4be25","type":"inject","z":"53f8b852.885c6","name":"Check todos os 60s","topic":"","payload":"","payloadType":"date","repeat":"60","crontab":"","once":true,"x":260,"y":96,"wires":[["5d180fc7.9ad06","27e67f9b.4f9158"]]},{"id":"5d180fc7.9ad06","type":"function","z":"53f8b852.885c6","name":"Test Influx DB","func":"    const isPortAvailable =;\n    msg.payload = {};\n     \n    var port = 8086;\n    \n    isPortAvailable(port).then( status =>{\n        if(status) {\n            //console.log('Port ' + port + ' IS available!');\n            msg.payload = {'InfluxDB':false,\"title\":\"InfluxDB\",\"color\":\"red\"};   // The port is available, hence the server is NOT running\n            node.send(msg);\n        } else {\n            //console.log('Port ' + port + ' IS NOT available!');\n            //console.log('Reason : ' + isPortAvailable.lastError);\n            msg.payload = {'InfluxDB':true,\"title\":\"InfluxDB\",\"color\":\"green\"};    // The port is not available, so the server MIGHT be running\n            node.send(msg);\n           \n        }\n    });\n    ","outputs":1,"noerr":0,"x":533.5,"y":97,"wires":[["3f3f8226.c9bfb6"]]},{"id":"3f3f8226.c9bfb6","type":"ui_template","z":"53f8b852.885c6","group":"44e5d7ea.043b2","name":"Status Icon","order":0,"width":0,"height":0,"format":"\ {\n    height: 25px;\n    width: 25px;\n    background-color: #bbb;\n    border-radius: 50%;\n    display: inline-block;\n    float: right;\n}\n\n\n
{{msg.payload.title}}\n \n
","storeOutMessages":true,"fwdInMessages":true,"x":780,"y":96,"wires":[[]]},{"id":"27e67f9b.4f9158","type":"function","z":"53f8b852.885c6","name":"Test MongoDB","func":" const isPortAvailable =;\n msg.payload = {};\n \n var port = 27017;\n \n isPortAvailable(port).then( status =>{\n if(status) {\n //console.log('Port ' + port + ' IS available!');\n msg.payload = {'MongoDB':false,\"title\":\"MongoDB\",\"color\":\"red\"}; // The port is available, hence the server is NOT running\n node.send(msg);\n } else {\n //console.log('Port ' + port + ' IS NOT available!');\n //console.log('Reason : ' + isPortAvailable.lastError);\n msg.payload = {'MongoDB':true,\"title\":\"MongoDB\",\"color\":\"green\"}; // The port is not available, so the server MIGHT be running\n node.send(msg);\n \n }\n });\n ","outputs":1,"noerr":0,"x":533,"y":158,"wires":[["2e85d9d.cc25126"]]},{"id":"2e85d9d.cc25126","type":"ui_template","z":"53f8b852.885c6","group":"44e5d7ea.043b2","name":"Status Icon","order":0,"width":0,"height":0,"format":"\ {\n height: 25px;\n width: 25px;\n background-color: #bbb;\n border-radius: 50%;\n display: inline-block;\n float: right;\n}\n\n\n
{{msg.payload.title}}\n \n
","storeOutMessages":true,"fwdInMessages":true,"x":781,"y":161,"wires":[[]]},{"id":"44e5d7ea.043b2","type":"ui_group","z":"","name":"System Status","tab":"7011ff77.15cb18","disp":true,"width":"6"},{"id":"7011ff77.15cb18","type":"ui_tab","z":"","name":"Home","icon":"dashboard"}]

The result:

The above flow and Node UI status indicator template should produce the following result:

NR UI Status Indicator

Node-Red UI Status Indicator

Synology Reverse Proxy revisited (again..)

Work is taking too much time, so I haven’t updated the blog for a long time. Anyway a series of quick posts are on the publishing queue, and this is one of the first ones.

In February, my single disk installed in my Synology DS212 failed, after 7 long years working. It still works, but the bad sector error count is high, and can not be used on the NAS.

Anyway, this meat that I needed to replace it, and this time I replaced it with two disks for RAID 1, instead of using a single disk on the NAS.

So why the long introduction?

Well installing new disks implied I need to do a full DSM install from scratch which meant that several things changed from the previous DSM version that I had and be upgraded along as the years passed.

One of such things that changed, for the better, was the reverse proxy support using nginx and the Apache http server abandonment.

While reverse proxy now is supported out of the box on the Application portal, it only works for sub domain sites. For example If I want to reverse proxy Audio Station, it is quite easy to do it on the Control Panel -> Application Portal. The same is true for reverse proxy any other service running on the network. An example of such configuration is in this post: DSM 6.0 Reverse Proxy

What is not still able to do on the DSM interface is to map URL paths to other servers as I’ve explained on this post: Reverse proxy for URL paths. For example mapping the path /api to a back end server from the main Synology site.

Still, it is quite simple to do, and here are the instructions.

  1. First we need to have ssh or telnet access to the DSM. Of course recommendation is to use ssh.
  2. We need to change to this directory: /usr/local/etc/nginx/conf.d
    root@DiskStation:/usr/local/etc/nginx/conf.d# pwd
  3. Now we create in this directory a file that must have the following naming convention: www.our_name.conf.
    For example, let’s create the following file, named


    with the following content:

    location ~ /api/ {

    This means that on the main Web Station site, the /api is passed out to the above server, in this case the

  4. We save the file and test now the configuration:
    root@DiskStation:/usr/local/etc/nginx/conf.d# nginx -T > /tmp/nginx.conf
    nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
    nginx: configuration file /etc/nginx/nginx.conf test is successful

    We can check the file /tmp/nginx.conf to see if there are no errors, and if the above configuration is in the file.

  5. So all we need now is to restart the nginx server:
    nginx -s reload

And that’s it, our Web Station URL path /api should be redirected to the back end server.

Simple BLE bridge to TTN Lora using the TTGO ESP32 LoRa32 board

The TTGO LoRa32 is an ESP32 based board that features Wifi and BlueTooth low energy but also includes an external Lora chip, in my case the SX1276 868Mhz version.

The following code/hack is just to test the feasibility of bridging BLE devices over the ESP32 and then to Lorawan, more specifically sending BLE data to the LoraWan TTN network.

I’m using Neil Koban ESP32 BLE library, that under platformIO is library number 1841 and the base ABP code for connecting to TTN.

In simple terms this code just makes the ESP32 to emulate a BLE UART device for sending and receiving data. It does that by using the Nordic UART known UUID for specifying the BLE UART service and using also the Nordic mobile applications, that supports such device, for sending/receiving data.

Using the Nordic mobile Android phone applications, data can be sent to the Lora32 board either by using the excellent Nordic Connect application or by also using the simpler and direct Nordic UART application.

The tests program just receives data through BLE and buffers it onto an internal message buffer that, periodically, is sent through Lora to the TTN network. I’ve decided arbitrary that the buffer is 32 bytes maximum. We should keep our message size to the necessary minimum, and also just send few messages to keep the lorawan duty factor usage within the required limits.

So, using the following code we can use our phone to scan from the ESP32 BLE device named TTGOLORAESP32 connect to it and send data to the device.

After a while, when the transmission event fires up, data is transmitted, and the BLE device just receives a simple notification with the EV_TXCOMPLETE message.

That’s it.

The ESP32 Oled Lora TTGO LoRa32 board and connecting it to TTN

The TTGO LoRa32 board is an ESP32 based board that has both an Oled and a Lora transceiver, in my case, the SX1276 transceiver for the 868Mhz band. So it is very similar to some of the ESP32 Oled boards available on the Internet. The board looks like this:

And the interesting part of this board is the new Wifi antenna located in the back that is made of bend metal:

The board also has a LiPo connector, and probably a charger circuit, since I haven’t tried it yet, a user controlled blue led, and a very dim red power led. The led is so dim that at first I thought the board was broken/short circuited, but it is normal.
The Lora Antenna is connected by U.FL/IPEX connector. Both a U.FL to SMA adapter cable is provided and also a cable to connect to the LiPo connector.

An important information to use this board for the LMIC LoraWan based communication is the location of the Lora transceiver DI01 and DIO2 pins. Fortunately they are exposed and connected internally to the ESP32 processor GPIO33 and GPIO32 pins respectively. I’ve updated the pin out for this board:


EDIT: Thanks to Andreas on the comment section to point out that this image, while is correct for my board version (with the “3D” metal antenna under the board), the pin labels ARE WRONG. So much for copy it from the seller page.

The (so far yet…) pins mapping are on the bellow image. I’ve checked with my physical board and it seems right now. Notice that the board rotated 180 degrees.


I hope this corrects definitely the issue.

So back to basics, the LMIC definition pins for using this board are:

const lmic_pinmap lmic_pins = {
    .nss = 18,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 14,
    .dio = {26, 33, 32}  // Pins for the Heltec ESP32 Lora board/ TTGO Lora32 with 3D metal antenna

The Blue Led Pin is at Pin 2, and according to the sample code the Oled Display is at I2C address 0x3C. The I2C bus where the OLed is at SDA pin 4 and SCLK pin 15.

Also it seems there are at least two revisions for the ESP32 silicon, Revision 0 (Zero) for the initial one, and the latest, at the current date, Revision one.

By executing the Andreas Spiess revision check code it seems that my board is using the latest revision:

REG_READ(EFUSE_BLK0_RDATA3_REG) 1000000000000000

Chip Revision (official version): 1
Chip Revision from shift Operation 1

Programming the board:
The board can be programmed easily with Platformio IDE by selecting as the target board the Heltec Wifi Lora board. Probably both boards are identical.

The platformio.ini file is as follows:

platform = espressif32
board = heltec_wifi_lora_32
framework = arduino

For supporting the OLed and the Lora transceiver we also need to install the ESP8266_SSD1306 lib (ID: 562) and the IBM LMIC library (ID: 852) by either manually installing them on the project root or by adding the following line to the platformio.ini file:

platform = espressif32
board = heltec_wifi_lora_32
framework = arduino
lib_deps= 852, 562

With this, the sample TTN INO sketchs for connecting either through ABP or OTAA work flawlessly without any issue by using the above LMIC pins configuration.

The sample sketch for the board: Connecting to TTN and display the packet RSSI:
Since we have the OLed, we can use the RX window to display the received RSSI of our messages on the gateway. This only works if the downlink messages from the gateway can reach back our node, so it might not work always. In my case, I’m about 3Km from the gateway in dense urban area, and not always I can display the packet RSSI.

How this works? Simple, just send our packet, and on the backend we send back the received RSSI as downlink message by using Node-Red, the TTN nodes, and some code:

Since our packet can be received by several gateways, we iterate over the TTN message and calculate the better RSSI and SNR:

// Build an object that allows us to track
// node data better than just having the payload

//For the debug inject node. Comment out when in real use
//var inmsg = msg.payload;
var inmsg = msg;  // from the TTN node

var newmsg = {};
var devicedata = {};
var betterRSSI = -1000;  // Start with a low impossible value
var betterSNR = -1000;

// WARNING only works with String data
// Use TTN decode functions is a better idea
var nodercvdata = inmsg.payload.toString("utf-8");

devicedata.device = inmsg.dev_id;
devicedata.deviceserial = inmsg.hardware_serial;
devicedata.rcvtime = inmsg.metadata.time;
devicedata.nodedata = nodercvdata;

// Iterate over the gateway data to get the best RSSI and SNR data
var gws = inmsg.metadata.gateways;

for ( var i = 0 ; i  betterRSSI )
        betterRSSI = gw.rssi;
    if ( gw.snr > betterSNR )
        betterSNR = gw.snr;

devicedata.rssi = betterRSSI;
devicedata.snr = betterSNR;

newmsg.payload = devicedata;

return newmsg;

We build then the response object and send it back to the TTN servers that send it to our node. The received data is then displayed on the Oled.

The Node-Red code is as follows:

[{"id":"d4536a72.6e6d7","type":"ttn message","z":"66b897a.7ab5c68","name":"TTN APP Uplink","app":"b59d5696.cde318","dev_id":"","field":"","x":140,"y":220,"wires":[["facbde95.14894"]]},{"id":"facbde95.14894","type":"function","z":"66b897a.7ab5c68","name":"Calculate better RSSI","func":"// Build an object that allows us to track\n// node data better than just having the payload\n\n//For the debug inject node. Comment out when in real use\n//var inmsg = msg.payload;\nvar inmsg = msg;  // from the TTN node\n\nvar newmsg = {};\nvar devicedata = {};\nvar betterRSSI = -1000;  // Start with a low impossible value\nvar betterSNR = -1000;\n\n// WARNING only works with String data\n// Use TTN decode functions is a better idea\nvar nodercvdata = inmsg.payload.toString(\"utf-8\");\n\ndevicedata.device = inmsg.dev_id;\ndevicedata.deviceserial = inmsg.hardware_serial;\ndevicedata.rcvtime = inmsg.metadata.time;\ndevicedata.nodedata = nodercvdata;\n\n// Iterate over the gateway data to get the best RSSI and SNR data\nvar gws = inmsg.metadata.gateways;\n\nfor ( var i = 0 ; i  betterRSSI )\n        betterRSSI = gw.rssi;\n        \n    if ( gw.snr > betterSNR )\n        betterSNR = gw.snr;\n}\n\ndevicedata.rssi = betterRSSI;\ndevicedata.snr = betterSNR;\n\nnewmsg.payload = devicedata;\n\nreturn newmsg;","outputs":1,"noerr":0,"x":400,"y":220,"wires":[["1ac970ec.4cfabf","94515e56.904228"]]},{"id":"1ac970ec.4cfabf","type":"debug","z":"66b897a.7ab5c68","name":"","active":false,"console":"false","complete":"payload","x":670,"y":260,"wires":[]},{"id":"2bea15d8.18f88a","type":"ttn send","z":"66b897a.7ab5c68","name":"TTN APP Downlink","app":"b59d5696.cde318","dev_id":"","port":"","x":970,"y":100,"wires":[]},{"id":"94515e56.904228","type":"function","z":"66b897a.7ab5c68","name":"set Payload","func":"msg.dev_id  = msg.payload.device;\nmsg.payload = Buffer.from(\"RSSI: \" + msg.payload.rssi);\n\nreturn msg;","outputs":1,"noerr":0,"x":670,"y":100,"wires":[["2bea15d8.18f88a","cd04abb9.ccd278"]]},{"id":"cd04abb9.ccd278","type":"debug","z":"66b897a.7ab5c68","name":"","active":true,"console":"false","complete":"true","x":930,"y":200,"wires":[]},{"id":"b59d5696.cde318","type":"ttn app","z":"","appId":"TTNAPPLICATIONID","region":"eu","accessKey":"ttn-account-v2.CHANGEMECHANGEME"}]

Just make sure that we have the TTN nodes installed, and change the credentials for your TTN Application.

On the TTGO ESP32 Lora32 board we just modify the event handling code to display the downlink message:

void onEvent (ev_t ev) {
    if (ev == EV_TXCOMPLETE) {
        display.drawString (0, 0, "EV_TXCOMPLETE event!");

        Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
        if (LMIC.txrxFlags & TXRX_ACK) {
          Serial.println(F("Received ack"));
          display.drawString (0, 20, "Received ACK.");

        if (LMIC.dataLen) {
          int i = 0;
          // data received in rx slot after tx
          Serial.print(F("Data Received: "));
          Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);

          display.drawString (0, 20, "Received DATA.");
          for ( i = 0 ; i < LMIC.dataLen ; i++ )
            TTN_response[i] = LMIC.frame[LMIC.dataBeg+i];
          TTN_response[i] = 0;
          display.drawString (0, 32, String(TTN_response));

        // Schedule next transmission
        os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
        digitalWrite(LEDPIN, LOW);
        display.drawString (0, 50, String (counter));
        display.display ();

For example we can now see on the serial port monitor:

EV_TXCOMPLETE (includes waiting for RX windows)
Sending uplink packet...
EV_TXCOMPLETE (includes waiting for RX windows)
Sending uplink packet...
EV_TXCOMPLETE (includes waiting for RX windows)
Sending uplink packet...
EV_TXCOMPLETE (includes waiting for RX windows)
Data Received: RSSI: -118
Sending uplink packet...
EV_TXCOMPLETE (includes waiting for RX windows)
Data Received: RSSI: -114
Sending uplink packet...
EV_TXCOMPLETE (includes waiting for RX windows)
Data Received: RSSI: -105

Thats it!

Some final notes:
Probably not related to the board, but when connecting it to an USB3 port, the Linux Operating system was unable to configure a device for the board. Connecting it to an USB2 port worked flawlessly:

usb 2-1: new full-speed USB device number 2 using xhci_hcd
usb 2-1: string descriptor 0 read error: -71
usb 2-1: can't set config #1, error -71      

As additional information the serial chip on this board is an umarked CP210x chip:

usb 4-1.3: new full-speed USB device number 6 using ehci-pci
cp210x 4-1.3:1.0: cp210x converter detected
usb 4-1.3: cp210x converter now attached to ttyUSB0


Bus 004 Device 006: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP2102/CP2109 UART Bridge Controller [CP210x family]

I haven’t yet tried the WiFi and checked if the metal antenna is any good, but with my preliminary tests, it seems it’s not very good.

Sample code:

Sample code for the board is on this github link:

Using the BSFrance Lora32U4 board to connect to the Things Network Lorawan

The BSFrance Lora32u4 II (Lora32U4II for helping Google out) board is an Atmega32U4 processor with a HDP13 Lora transceiver on the same board. As far as I’m aware, the HDP13 is similar to the RFM95W (including pinout), and in my case it seems it has an original Semtech SX1276 (868Mhz radio transceiver) chip installed on the HDP13 module.
This board is similar to the Adafruit 32U4 Lora feather, if not equal… (possible schematics for the Lora32u4 board)

The board hardware includes beside the Lora HDP13 module a LiPo connector with an 2 pin JST PH 2.0mm pin spacing connector and the power supporting electronics.
There are two leds: one orange LED for LiPo and charger status, that blinks very fast when no LiPo is connected, and a very bright white led that fades in and out when the bootloader is in the programming mode or programming is ongoing. After the bootloader exits and starts the main program, the led shuts off.
This led, as usual in Arduino boards, is connected to I/O pin 13, so it is software controllable.

Also the only way to power up the board is either trough the USB port, LiPo battery or 5V to an input pin. No other voltages, like RAW voltages above 5V are supported.

As a final note, the board that I’ve bought also came with an uFL adapter cable for SMA, an antenna and a link for accessing documentation, so, excluding the LiPo battery, the complete kit.

Starting up using the board:

I’m testing the board to send data to the Things Network and doing so by using PlatformioIO as the developing IDE. Platformio IDE is much better than the Arduino IDE, since each project has it’s own depending libraries directory .piolibdeps which we can modify and edit the library code without breaking other projects.

The platformio.ini board definition for the Lora32u4II board is just a clone of Adafruit feather 32u4:

platform = atmelavr
board = feather32u4
framework = arduino

As the code to send data to the TTN network, I’ve just used ABP lorawan device connection that I’ve used on my previous hand build node.

I’m testing the node with both the IBM LMIC Library (ID: 852) and the Arduino LMIC Library (ID: 1729).

After setting the correct keys and device ID, all we need is to change the LMIC pins configuration for this board: LoRa32u4II pinout diagram

According to documentation the pins are:

  1. nss (SS – Chip Select): Pin 8
  2. rst (Reset): Pin 4
  3. DIO (Lora TX/RX indicator): Pin 7

So the LMIC Pins configuration is:

const lmic_pinmap lmic_pins = {
    .nss = 8,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 4,
    .dio = {7, 6 , LMIC_UNUSED_PIN}

Regarding Pin 6, is the chosen pin to connect to the DIO1 pin. This pin signals receive timeouts generated by the radio module.

The connection of this pin is required for LMIC and for the onEvent() function signaling of EV_TXCOMPLETE to be triggered/fired, otherwise the onEvent() funciton is never called.

Since this is a LoraWan Class A node, after the transmission, two receive windows are opened for any downlink data that might be sent to the node.

The DIO1 pin signals the receive timeout, and at the end of the receive windows, triggers the EV_TXCOMPLETE event.

I’ve tried to use other pins, for example, pin 3, but then the EV_TXCOMPLETE event was never fired… Strange.

Anyway, with the above configuration and with DIO1 connected through a wire bridge to pin 6 works fine.

If we do not connect DIO1 by removing the DIO1 pin configuration:


with the platformio IBM Lmic library (Id: 852), or with the Arduino LMIC Library the LMIC fails. An example:

pio device monitor --port /dev/ttyACM0 --baud 115200
[cortex@brightlight:TTN32u4ABP]$ pio device monitor --port /dev/ttyACM0 --baud 115200
--- Miniterm on /dev/ttyACM0  115200,8,N,1 ---
--- Quit: Ctrl+C | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
.piolibdeps/IBM LMIC framework_ID852/src/hal/hal.cpp:24

The line hal.cpp:24 point to an ASSERT that doesn’t allow a LMIC_UNUSED_PIN for DIO1.

Putting pin 6 and making sure that it is connected to DIO1 is required. Otherwise if the pin is defined but not connected we have the following behaviour:

--- Miniterm on /dev/ttyACM0  115200,8,N,1 ---
--- Quit: Ctrl+C | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
Sending uplink packet...

As we can see the EV_TXCOMPLETE event is never fired, and the associated reschedule of another transmission never happens, since the code that triggers the next transmission is inside the code for the EV_TXCOMPLETE event. The only way, in this case, to exit this situation is to reset the board so another transmission can happen.

So if using the above LMIC pins configuration and connecting DIO1 to pin 6, sending data to the The Things Network works just fine:

Data received at the TTN side

Some final notes, tips and tricks:

The ATMega 32U4 USB Serial port:
The ATMega 32U4 USB serial port is a bit fiddly when using it from the Arduino framework. At reset or connection first the USB port is used by the bootloader (white led fading in and out). After a while the board starts to execute the flash program (white led off), but it resets the USB port. The host computer might have an issue with this and fails to assign an USB address.

The solution is just to add at the start of the setup function a delay:

void setup() {
  delay(2500);   // Give time to the ATMega32u4 port to wake up and be recognized by the OS.

Using minicom instead of PlatformIO serial monitor:
This one is quite simple to explain, since minicom survives to the USB port resets since they appear and disappear through the board reset.
Against it, is that we need to explicitly exit minicom to be able to program the board.

# minicom -D /dev/ttyACM0 -b 115200

The PlatformIO Arduino LMIC library is outdated:
This is solved now. Lib 852 is now updated.
The Arduino LMIC version (1729) on the PlatformIO is outdated, since, for example doesn’t have neither the LMIC_UNUSED_PIN definition and the LMIC_setClockError function needed for a successful OTAA TTN network join.

The solution is just clone the Arduino LMIC library and copy the src folder to .piolibdeps/IBM LMIC framework_ID852/ removing the original src folder version.

Comparing Library sizes:

Using the IBM LMIC Library (ID:852) with PINGS and BEACONS disabled on the config.h file, otherwise it doesn’t fit on the 32u4 32K flash space, our sketch uses the following space:

AVR Memory Usage
Device: atmega32u4

Program:   26040 bytes (79.5% Full)
(.text + .data + .bootloader)

Data:       1014 bytes (39.6% Full)
(.data + .bss + .noinit)

Using the Arduino LMIC library (ID: 1729) with PINGS and BEACONS enabled, but a more efficient AES implementation, we get:

AVR Memory Usage
Device: atmega32u4

Program:   22776 bytes (69.5% Full)
(.text + .data + .bootloader)

Data:        954 bytes (37.3% Full)
(.data + .bss + .noinit)

With PINGS and BEACONS disabled we get:

AVR Memory Usage
Device: atmega32u4

Program:   19032 bytes (58.1% Full)
(.text + .data + .bootloader)

Data:        903 bytes (35.3% Full)
(.data + .bss + .noinit)

So we get, with this last change, and while keeping support for OTTA, at least 8K/9K for program space not related to the Lorawan/TTN code support.

Starting up with the Nordic NRF52 BLE chip

The nRF52 based chips are the latest version of the popular Bluetooth chip from Nordic that has an ARM Cortex based processor and Bluetooth communications support.
Major differences from the previous nRF51 version includes:

  1. Based on ARM Cortex M4F instead of ARM M0.
  2. Support for the latest Bluetooth 5 specification
  3. On chip NFC support for device bounding and probably something else

The following post centralizes the information that I gathered to start using the demo board that I bought based on the nRF52832 chip.

The eBay,Aliexpress nRF52832 based board:
I’ve bought my nRF52832 based board from AliExpress for around 13€. An higher price than the ESP32 which has both WifI and also blueetooth, but since I really needed to start using the nRF5X base chips I’ve bought what is called “NRF52832 Mini Development Board Gold Core board Wireless Bluetooth Transceiver Module”…

This board build is based on a two boards joined together: one daughter board holding the nRf52832 chip, and another, larger board, exposing the pins, JTAG/SWD connector, power regulator, two leds and two switches. As a bonus the main board was designed for something else and so all the pins silk screen are just plain wrong, but at least the power pins and the SWD pins are correctly identified.

For mapping out correctly the nRF pins to the out pins we need to see the board schematics vs the daughter board pins.

This board schematics are here at this link: NRF52832 Module Test Board V1.0.

And the daughter board pinout is here:

Checking the schematics vs the daughter board pin out we can see that on the pdf schematics file our nRF chip is located where would/should be a CC2640_RGZ module (!…). For example on that module the DIO0 pin corresponds to P25 pin, the DIO1 pin to P26, and so on. We also can check that by, probably sheer luck, the power pins and SWD pins TCLK-SWCLK and TDIO-SWDIO are just right… and so they just reused the main board to hold the nRF52.

Checking out the board and the schematic we can see also that we have a switch on nRF52 pin P04 and two red leds at P30 and P31. The leds can be disconnected by removing the soldering on the nearby solder bridges. The other pins seem free.

As a final note, at least the board that I’ve received, comes with the BLE peripheral Nordic UART example loaded as the running firmware.

More info:Taida Century Gold Core NRF52 board

Programming the board
The board can be programmed at least by two ways:

  1. Openocd On chip debugger – But a set of patchs are needed to support the nRF52
  2. Black Magic Probe – Running on a cheap stm32F103C8T6 board – Blue pill

Both ways allow to successfully program the board and debug the running code.

To avoid making this a very long post I’ve split it into further posts how to build the tools necessary to program the nRF52 chip.

  1. Setting up Openocd for programming the Nordic nRF52832 chip
  2. Building a Black Magic Probe using the “blue pill” STM32F103C8T6 based board