PZEM-004T ESP8266 software

Following up the home energy meter post based on an ESP8266 and PZEM-004T hardware, this post describes succinctly the software for using the energy meter.

There are at least two components to the solution:

  1. ESP8266 software for driving the power meter and make the measurements.
  2. The backend software for receiving and processing data.

The ESP8266 software:
The power meter software for the ESP8266 available on this GitHub repository, uses an available PZEM-004T library for accessing the power meter, and sends the collected data through MQTT to any subscribers of the power meter topic.
I’m using the convention that is also used on Thingsboard, namely an MQTT attributes topic to publish the device status, and a telemetry topic to post the data in JSON format.
Around lines 80 on main.cpp of PowerMeter sources, the topics are defined as:

  1. Attributes: “iot/device/” + String(MQTT_ClientID) + “/attributes”
  2. Telemetry: “iot/device/” + String(MQTT_ClientID) + “/telemetry”

MQTT_ClientID is defined on the secrets.h file, where we also define a list of available WIFI connections for our ESP8266. The attributes topic periodically sends the current device status (RSSI, HEAP, wifi SSID), while the data on the telemetry topic is fed into a timeseries database such as InfluxDB where then a Grafana Dashboard shows and allows to see the captured data across time.

As also my previous post regarding framework and libraries versions, I needed to block the ESP8266 framework version and the SoftwareSerial library because the combination of these with the PZE-004T library was (is ?) broken of more recent versions. As is currently defined on the platformio.ini file, the current set of versions, work fine.

A lot of people had problems working with the use of SoftwareSerial library for the PZEM library to communicate with the hardware. The issue, that I accidentally found out, are related with timing issues to communicate with the PZEM hardware. There are periods of time that the PZEM is not responsive, probably because is making some measurement.

The solution to this issue is at start up to try the connection during some time, at 3 seconds interval until it succeeds. After the connection is successful, we need to keep an interval around one minute between reads to encounter no issues/failures . If this interval is kept, the connection to the PZEM hardware works flawlessly, at least with the hardware that I have.

So the connection phase is checked and tried several times to synchronize the ESP8266 with the PZEM, and them every single minute there is a data read. If the interval is shorter, lets say, 30s, it will fail, until the elapsed time to one minute is completed.

The firmware solves the above issue, and after reading the data, it posts it to a MQTT broker. The firmware also makes available a web page with the current status and measurements:

Power Meter Web Page

Then there are other bits, namely since the meter will be on the electric mains board, an UDP logging facility that allows on the computer to run an UDP server and see what is going on.

The back-end software:
I’ve not done much on this area, since most of it is just standard stuff. An MQTT broker and Node-Red flow. The flow just receives the data, saves it into an InfluxDB database and creates a Node-Red UI dashboard.

This screenshot doesn’t show much, but shows more or less what information is available, including the current power factor.

Future work:
Basically what is missing is two things:

  1. Grafana Dashboard based on the InfluxDB data.
  2. Some kind of exporter to CSV or Spreadsheat to allow further data analysis such as the daily power consumption totals.
Advertisements

Measuring home energy consumption with the PZEM004T and ESP8266

First of all a very BIG WARNING: This project works with AC mains current, which, where I live, is 220V AC, meaning that extra precautions must be taken, since risk of serious injuries and/or death is possible.

The PZEM004T
The Peacefair PZEM004T device (available at the usual far east shopping web sites) is a device that can measure energy consumption by monitoring a live AC mains wire using an inductor as the measuring sensor. One of the wires that carries the current (normally the AC power phase) goes through the inductor so that the current that flows through it can be measured and hence the other measurements, including power consumption, can be also measured.

The PZEM004T can be bought with two types of inductor, one that opens up and can clip on the wire of interest, and the other type that requires to disconnect and connect the wire of interest, so that it passes through the inductor core. I’ve chosen the former, since in this case I do not need to do any disconnection/connections on the electric mains board, and so it is way safer and easier to add and remove the measurement device.

PZEM 004T

The PZEMM04T outputs the collected data through an opto-coupled isolated serial port that allows to retrieve values for voltage, current/intensity, current power consumption and energy accumulated consumption.

The device that connects to the PZEM serial port must provide power to it (5V), and so the serial port data lines are 5V level, which means that we should use a 5v to 3.3V level converter to connect to the ESP8266. While there are several hacks to make the PZEM004T serial port to use 3.3V on the serial port, and hence have 3.3V data lines, I just used a simple level converter to connect the serial port to the ESP8266, and avoid in this way any modifications to the PZEM-004T. The serial port connector is a 4 Pin JST-XH connector.

So the basic schematics for using the PZEM004T is as simple as the following highly professionally drawn schematic shows:

PZEM004T And Wemos D1 connection schematic

Two things of notice:

  • The Ground connection – The serial port uses the same ground as the Wemos D1.
  • The Power supply – Wemos D1 is powered through the 5V pin, NOT through the 3.3v pin, since we need 5V to power up the PZEM serial port.

The level converter is just a simple, cheap I2C level converter, used in this case to level convert the serial data lines.
Also the above schematic shows that the TX and RX pins connect to the Wemos D6 and D5 pins, since I’ll be using software serial, but the depicted connections are just an example, since the pins to be used can be software defined.
In my code I use the connections the other way around ( D5-TX, D6-RX) so beware to how the pins are connected and how they are defined at the software level.

Powering up the ESP8266 Wemos D1
I’ll be using the Wemos D1 ESP8266 based boards, as we can see on the above schematics (associated to a prototype shield to solder the connections and the level converter), we need to power it up using 5V. The ESP8266 uses 3.3v, but the Wemos board has a 5V input and a 5V to 3.3V converter, so no issues there. The PZEM004T on the other hand uses 220V, and since the ESP8266 will be near the PZEM004T, it makes sense to get the 5V CC from the 220V AC to power up the Wemos D1 board.

The 220V AC to 5V CC can be achieved in several ways, and since I’ll be installing all this in a DIN case on my home electricity mains board, the easiest solution is just to buy a 5V output 220V based DIN power supply for around 10/15€. This is the easiest and safest solution.

There are other solutions, including the one that I’m using that is based on the 5V HLK-PM01 based modules. This requires some assembly and also be aware that there are fake HLK modules around.

Do not connect the HLK-PM01 without the associated protection components, namely fuses, VDR, and the most important component the thermal fuse of 72ºC (Celsius!) that will cut off the power to anything after it (including the VDR) if the temperature of the HLK module or it’s surroundings rises above the 72ºC temperature. I’ve not soldered the thermal fuse, since the heat from the soldering iron can destroy it, just used a two terminal with screws to connect it.

The schematic used is the following one:

5V Power supply

The PZEM-004T, the HLK based power supply and the Wemos D1 ESP8266 module are inside a double length project DIN case so that all components can be safely installed on the mains electricity board.

Since all is self contained on the DIN case, all is needed is to clip the inductor on the main phase wire entering the mains board (and it is easy since the inductor is an open clip on type), and connect the components to the 220V AC power. I’ve derived the power from one of the circuit breakers that already protects a house circuit, which adds an additional layer of protection.

The software
On the next post I’ll discuss the software for driving the ESP8266 to gather data from the PZEM004T and how it works.
The firmware for driving this is already available at: https://github.com/fcgdam/PowerMeter

When updating breaks projects…

A quick post regarding updating platforms and libraries for projects, specifically projects for the ESP8266 platforms:

The PZEM004T is device available on eBay and other sites, that allows to measure energy consumption. The PZEM004T has a serial output port and when connecting it to, for example, an ESP8266, we can access the collected data trough WIFI and process it for finding out how much electricity we are using, and so on.

Anyway, when using the ESP8266 WEMOS D1 mini, to be able to still use the USB serial port, we need to use Software serial emulation. In fact the Arduino PZEM004T library available on Github and on the Platformio library registry allows the use of the Software Serial to communicate with the PZEM004T (and it works just fine).

So what is the issue?

I’m using Platformio to develop the ESP8266 application, and normally when running, it checks and offers any updates that might be available. So, I’ve updated to the latest Espressif ESP8266 platform and ESPSoftwareSerial, and then everything just break down:

  • ESPSoftwareSerial last version just completely breaks the previous existing API which made the PZEM004T library also broken.
  • The new ESP8266 platform removes Esp8266 a SDK attachInterruptArg function which renders the ESPSoftwareSerial library unbuildable

The solution?

The solution with Platformio is quite easy: use semantic versioning.

In fact something like this on the platformio.ini file:

[env:d1_mini]
platform = espressif8266
...
...

can be locked to a working previous version:

[env:d1_mini]
platform = espressif8266@2.0.3
...
...

The same can be done with the project libraries. While the ESPSoftwareSerial (the PZEM004T dependency loads it) does not need to be defined, specifying it allows to use a specific version:

[env:d1_mini]
platform = espressif8266@2.0.3
board = d1_mini_lite
framework = arduino
upload_speed = 921600
monitor_speed = 115200

lib_deps =  ESPSoftwareSerial@5.0.3
            PZEM004T
            MQTT
            LiquidCrystal_I2C
            SimpleTimer
            ESPAsyncTCP
            ESP Async WebServer
            Time

And with this, the ESP8266 platform and ESPSoftwareSerial versions locked, the issues with the newer versions are avoided, and the code compiles and works as it should.

So, updating is fine, but when it breaks it can be an issue. Fortunately Platformio allows the usage of specific version for building our projects, and even allows to deploy our specific library version under the project lib directory.

Have fun!

Docker container web interface – Portainer and Riot-OS Development

This post is a follow up of starting up with RIOT-OS. To be able to develop with RIOT-OS an easy (and easier) way to do so is just to install docker and web UI docker interface Portainer to control docker.

So we will install Docker, Portainer, and finally the RIOT-OS building environment.

Installing Docker and Portainer, is an initial stepping stone for using the dockerized development environment for RIOT-OS, since I don’t want to install all the development environments in my machine.

Installing Docker:
On Arch-Linux is as simple as installing the Docker package using pacman, enabling the services and rebooting.
Basically we need to run, as root the following commands:

pacman -S docker
systemctl enable docker.service
reboot

After rebooting the following command should return some information

docker info

A sample output is:

Containers: 2
 Running: 0
 Paused: 0
 Stopped: 2
Images: 9
Server Version: 18.09.0-ce
Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Native Overlay Diff: false
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
 Volume: local
 Network: bridge host macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
...
...
...

Installing Portainer
Installing the Docker Portainer Web UI is as simple as:

docker pull portainer/portainer

To run Portainer a set of complete instructions on this page, but basically on the simplest way is:

$ docker volume create portainer_data
$ docker run -d -p 9000:9000 --name portainer --restart always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer

We can now check if the docker image is up:

$ docker ps
CONTAINER ID        IMAGE                 COMMAND             CREATED             STATUS              PORTS                    NAMES
7a38ae7fc922        portainer/portainer   "/portainer"        4 seconds ago       Up 3 seconds        0.0.0.0:9000->9000/tcp   portainer

Since I have already ran the Portainer container, the initial setting up steps when accessing the URL HTTP://localhost:9000 do not appear, but we need to choose:

  1. A set of credentials to use as de administrator for portainer
  2. The local machine registry to connect to the local docker containers.

1- At initial access we define an user and password:

Portainer Credentials

2- Then we connect to our local docker instance:
Portainer Local Docker

Press Connect and then we can now access our Docker instance from Portainer:
Portainer Main Screen

Pressing the Local Docker Connection we can now manage our docker resources.

Installing the build environment for RIOT-OS
We can do it by two ways:

From the command line:

docker pull riot/riotbuild

or use Portainer:

This container is very big, so we need to wait some time for the container image download. The command line shows in greater detail the download process.

After the image is downloaded, we can follow these instructions for building our apps using the docker container as the build environment.

After the image is installed:

To use is is as simple as going the the examples directory and do:

make BUILD_IN_DOCKER=1

From this we are now able to build based RIOT-OS applications for several targets, including the ESP8266/ESP32.

As we can see we even don’t need to have a running container, just the image.

Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 1: Installing

A more or less standard software stack used for control, processing and displaying data, has emerged that is almost used by everyone when hacking around on Arduinos, ESP8266, Raspeberry Pi’s and other plethora of devices. This “standard” software stack basically always includes the MQTT protocol, some sort of Web based services, Node-Red and several different cloud based services like Thingspeak, PubNub and so on. For displaying data locally, solutions like Freeboard and Node-Red UI are a great resources, but they only shows current data/status, and has no easy way to see historical data.

So on this post I’ll document a software stack based on Node-Red, InfluxDB and Graphana that I use to store and display data from sensors that I have around while keeping and be able to display historical memory of data. The key asset here is the specialized time-series database InfluxDB that keeps data stored and allows fast retrieval based on time-stamps: 5 minutes ago, the last 7 days, and so on. InfluxDB is not the only Time-Series database that is available, but it integrates directly with Grafana the software that allows the building of dashboards based on stored data.

I’m running an older version of InfluxDB on my ARM based Odroid server, since a long time ago, ARM based builds of InfluxDB and Grafana where not available. This is now not the case, but InfluxDB and Grafana have ARM based builds so we can use them on Raspberry PI and Odroid ARM based boards.

So let’s start:

Setting up Node-Red with InfluxDB
I’ll not detail the Node-Red installation itself since it is already documented thoroughly everywhere. To install the supporting nodes for InfluxDB we need to install the package node-red-contrib-influxdb

cd ~/.node-red
npm install  node-red-contrib-influxdb

We should now restart Node-red to assume/detect the new nodes.

Node Red InfluxDB nodes

Installing InfluxDB
We can go to the InfluxDB downloads page and follow the installation instructions for our platform. In my case I need the ARM build to be used on Odroid.

cd ~
wget https://dl.influxdata.com/influxdb/releases/influxdb-1.2.0_linux_armhf.tar.gz
tar xvzf influxdb-1.2.0_linux_armhf.tar.gz

The InfluxDB engine is now decompressed in the newly created directory influxdb-1.2.0-1. Inside this directory there are the directories that should be copied to the system directories /etc, /usr and /var:

sudo -s
cd /home/odroid/influxdb-1.2.0-1

Copy the files to the right location. I’ve added the -i switch just to make sure that I don’t overwrite nothing.

root@odroid:~/influxdb-1.2.0-1# cp -ir etc/ /etc
root@odroid:~/influxdb-1.2.0-1# cp -ir usr/* /usr
root@odroid:~/influxdb-1.2.0-1# cp -ir var/* /var

We need now to create the influxdb user and group:

root@odroid:~/influxdb-1.2.0-1# groupadd influxdb
root@odroid:~/influxdb-1.2.0-1# useradd -M -s /bin/false -d /var/lib/influxdb -G influxdb influxdb

We need now to change permissions on /var/lib/influxdb:

cd /var/lib
chown influxdb:influxdb influxdb

We can now set up the automatic start up script. On the directory /usr/lib/influxdb/scripts there are scripts for the systemctl based Linux versions and init.d based versions that is my case. So all I have to do is to copy the init.sh script from that directory to the /etc/init.d and link it to my run level:

root@odroid:~# cd /etc/init.d
root@odroid:/etc/init.d# cp /usr/lib/influxdb/scripts/init.sh influxdb
root@odroid:/etc/init.d# runlevel
 N 2
root@odroid:/etc/init.d# cd /etc/rc2.d
root@odroid:/etc/init.d# ln -s /etc/init.d/influxdb S90influxdb

And that’s it. We can now start the database with the command /etc/init.d/influxdb start

root@odroid:~# /etc/init.d/influxdb start
Starting influxdb...
influxdb process was started [ OK ]

We can see the influxdb logs at /var/log/influxdb and start using it through the command line client influx:

root@odroid:~# influx
Connected to http://localhost:8086 version 1.2.0
InfluxDB shell version: 1.2.0
> show databases
name: databases
name
----
_internal

> 

Installing Grafana
We need now to download Grafana. In my case for Odroid since it is an ARMv7 based processor, no release/binary is available.
But a ARM builds are available on this GitHub Repository: https://github.com/fg2it/grafana-on-raspberry for both the Raspberry Pi and other ARM based computer boards, but only for Debian/Ubuntu based OS’s. Just click on download button on the description for the ARMv7 based build and at the end of the next page a download link should be available:

odroid@odroid:~$ wget https://bintray.com/fg2it/deb/download_file?file_path=main%2Fg%2Fgrafana_4.1.2-1487023783_armhf.deb -O grafana.deb

And install:

root@odroid:~# dpkg -i grafana.deb
Selecting previously unselected package grafana.
(Reading database ... 164576 files and directories currently installed.)
Preparing to unpack grafana.deb ...
Unpacking grafana (4.1.2-1487023783) ...
Setting up grafana (4.1.2-1487023783) ...
Installing new version of config file /etc/default/grafana-server ...
Installing new version of config file /etc/grafana/grafana.ini ...
Installing new version of config file /etc/grafana/ldap.toml ...
Installing new version of config file /etc/init.d/grafana-server ...
Installing new version of config file /usr/lib/systemd/system/grafana-server.service ...

Set the automatic startup at boot:

root@odroid:~# ln -s /etc/init.d/grafana-server /etc/rc2.d/S91grafana-server

And we can now start the server:

root@odroid:~# /etc/init.d/grafana-server start
 * Starting Grafana Server    [ OK ] 
root@odroid:~# 

We can now access the server at the address: http://server:3000/ where server is the IP or DNS name of our ODroid or RPi.

Conclusion:
This ends the installation part for the base software.

The following steps are:

  • Create the Influx databases –
  • Receive data from sensors/devices and store it on the previously created database
  • Configure and create Grafana data sources and dashboards
  • Add some plugins to Grafana

LPWAN – Starting up with LoraWAN and The Things Network

LPWAN Networks – A simple introduction
Low Power Wide Area Communications (LPWAN) classifies a group of communication protocols featuring low power usage and a high communication range. For Internet of Things communications, where battery powered devices and constrained devices (weak CPU, low RAM/ROM) are the norm, LPWAN use as the communication protocol for IoT makes sense, since it makes possible to have standalone devices with batteries that last years, instead of hours or days, and might be hundreds of meters to Kms away from a base station/gateway.

But LPWAN protocols, in contrast have low communication bandwidth, since from power, range and bandwidth, we can only have two of those, and while this might be a problem for certain applications, IoT devices don’t require high bandwidth and since most have sparse communication requirements, and when they do communicate they don’t need to transmit a lot of data.

Starting up with LoraWan and The Things Network
One of the possible ways of starting to use LPWAN networks in our IoT devices, is to use a LPWAN protocol named LoraWan, which is based on the Lora physical protocol, and if available at our area, the crowd sourced LPWAN network The Things Network as the backend network for receiving data.

Lora uses the 868Mhz ISM radio band and it uses a form of signal transmission called CSS. The ISM radio band can be used freely by everybody, but under certain rules that depends of the country where the devices are located. So to use that band, rules like maximum emission power and duty cycle (usage of the available spectrum) are defined, and in Europe, the maximum power is 20mW and 1% duty cycle per day. Additionally the back end operator can add other restrictions.

Over Lora, the Lorawan protocol is an open standard and source code for implementing it is available and already ported to several devices, including the Arduino, Raspberry PI and the ESP8266, among others.

The software for implementing the LoraWan protocol at the end devices (nodes) is IBM’s LMIC library, available at Github and on Platformio libs:

[ ID  ] Name             Compatibility         "Authors": Description
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[ 852 ] IBM LMIC framework arduino, atmelavr, atmelsam, espressif8266, intel_arc32, microchippic32, nordicnrf51, teensy, timsp430 "IBM, Matthijs Kooijman": Arduino port of the LMIC (LoraWAN-in-C, formerly LoraMAC-in-C) framework provided by IBM. | @1.5.0+arduino-1

Based on this library we can build code and nodes that are able to transmit data through LoraWan to a network backend. Specifically for the Arduino, the Atmega328 is the bare minimum to begin with, since the library, due to use of AES encryption functions occupies a lot of memory.

The backend can be provided by really anyone, including Telco operators, or private and crowd source operators like The Things Network (TTN). TTN provides the backend and management services, but depends on crowd sourced gateways, and might not be available at our area. Still it is possible, for testing, to build our own gateways, our buy them, and connect them to the Things Network. TTN doesn’t require any access fees (yet).

So with LoraWan an the Things Network, we can build our own nodes and gateways since code and hardware can be easily obtained, connect them and use it to build applications.

Regarding LoraWan we can also read this great introduction from Design Spark.

Lora hardware:

Anyway the easiest way for starting up using Lora and Lorawan, is to buy an Dragino Lora Shield and connect it to an Arduino Uno or Mega.

Dragino Lora Shield
Dragino Lora Shield

This is a great shield to startup since doesn’t need any soldering or complex configuration, just plug it on an Arduino shield and use the LMIC library and some code samples. Also the Dragino Shield can be used to build a simple gateway by connecting it to a Raspberry PI or ESP8266 to build what is called a single channel gateway, that allows to test gateway functionality, but it isn’t quite compatible with the LoraWan specifications. Anyway it gets the job done if there is no gateway nearby. Just make sure that you by version 1.3 or 1.4 of the shield. Mine also came with an SMA antenna.

Other alternatives to start using Lorawan are available at eBay/Aliexpress and other renowned name shops, namely Lora radio transceivers at around 8/16€, for example the HopeRF RFM95. Those we can also use them with Arduino or ESP8266 to build our nodes or single channel gateways.

Just make sure that the frequency for these modules and shields must match the allowed radio transmission frequency in your area. In my case, in Europe is 868Mhz, but for example at USA is 900Mhz.

Dragino Lora Shield Jumpers
The Shield has some jumpers and only looking at the schematic and cross referenced them with the RFM95 module (used by the shield as the Lora transceiver) I could see what they where for:

– There are two set of jumpers:

  • One defines the pins for SPI communication: SV# Jumpers;
  • The other set defines which data pins of the RFM95 module are exposed to the shield allowing them to be connected to the Arduino: JP# Jumpers.

The JP# jumpers connect the following if closed:

  • JP1 – RFM95 DI1 – Arduino pin D6
  • JP2 – RFM95 DI2 – Arduino pin D7
  • JP3 – RFM95 DI5 – Arduino pin D8

The RFM95 pin DI0 is permanently connected to Arduino pin D2.
The RFM95 pin RST (Reset) is permanently connected to Arduino pin D9.

Their function for Lora might be the following (The function depends how the RFM95 module is used)

  • RFM95 DI0 – Indicates if data was received and is ready to be read through the SPI bus. Indicates end of transmission for data that was previously sent: RXReady/TXReady
  • RFM95 DI1 – Receive timeout for Lora mode.
  • RFM95 DI2 – Receive timeout for FSK mode.
  • RFM95 DI5 – Used by Semtech Library. LMIC library doesn’t use it.

The SV# jumpers connect:

  • SV2 – SPI Clock line. Default on pin D13, otherwise on Arduino SPI CLK on the ICSP header.
  • SV3 – SPI Data line In (MOSI). Default on pin D11, otherwise on Arduino MOSI pin on the ICSP header.
  • SV4 – SPI Data line Out (MISO). Default on pin D12, otherwise on Arduino MISO pin on the ICSP header.

The SPI Chip Select line is always at pin D10.

So now we know that D10, D9 and D2 are used permanently connected and used by the shield, and the others can be connected or disconnected if needed or not.

LMIC software with Dragino Lora Shield:

To start using the Dragino Lora Shield so it connects to a LPWAN network, we can start using the following example: TTN node by ABP. ABP means Activation by Personalization, which means that all data for joining the network will be explicitly defined on the code. Other alternative would be OTAA: Over the air activation, where the gateway sends the configuration data to the node. Since we don’t know if we have a gateway in range, let’s start first with ABP mode.

The above code uses the LMIC library for implementing the LoraWan stack.
Since LMIC library doesn’t use DI05, we can remove the JP3 jumper, and free this IO line for other things, like another shield.

To use the LMIC library we must define first the pins that are used according to the shield configuration:

// Pin mapping
const lmic_pinmap lmic_pins = {
    .nss = 10,                   //Chip Select pin. In our case it is always D10.
    .rxtx = LMIC_UNUSED_PIN,     //Antenna selection pin: not used in our case.
    .rst = 9,                    //Reset pin used to reset the RFM95: D9
    .dio = {2, 6, 7}             //DIO pin mapping for DIO0, DIO1 and DIO2  
};

But DIO2 pin is only used for FSK modulation, and so if only using LoraWan we can also open up the JP2 jumper, and our LMIC pin configuration can be as follows:

// Pin mapping
const lmic_pinmap lmic_pins = {
    .nss = 10,                   //Chip Select pin. In our case it is always D10.
    .rxtx = LMIC_UNUSED_PIN,     //Antenna selection pin: not used in our case.
    .rst = 9,                    //Reset pin used to reset the RFM95: D9
    .dio = {2, 6, LMIC_UNUSED_PIN} //DIO pin mapping for DIO0, DIO1. DIO2 is not used  
};

Connecting to TTN
Connecting to The Things Network (TTN) depends of course of an available TTN gateway at the nodes range. Still we need to configure some parameters to allow the node to connect.

On this example the connection is done through Activation by Personalization. This means that we should put on our code the Network Session key and Application Session key on the code. To obtain these values we need to register on the TTN site, TTN Dashboard and add an ABP device..

From this site, then we can get the three configuration parameters that we need:

  • Device ID
  • Network Session key
  • Application Session key

Note by pressing the icon we can get the values in a form ready to paste it on the code:

/*************************************
 * TODO: Change the following keys
 * NwkSKey: network session key, AppSKey: application session key, and DevAddr: end-device address
 *************************************/
static u1_t NWKSKEY[16] = { 0xAA, 0x0F, 0x29, 0xD3, 0x9D, 0x7A, 0xAE, 0x3B, 0x54, 0xCF, 0xDF, 0x2F, 0x2A, 0x23, 0x55, 0xB5 };
static u1_t APPSKEY[16] = { 0x2F, 0x85, 0x43, 0x5B, 0x34, 0x9C, 0x80, 0xC6, 0xA8, 0xFA, 0x27, 0x49, 0x5A, 0x36, 0x82, 0x21 };
static u4_t DEVADDR = 0x95337738;

And that’s it, when running the sketch, and if in range of a gateway, the sent message should appear at the Dashboard:

Messages received for the device
Messages received for the device

Final thoughts:
In my area there are at least, supposedly, two active TTN gateways and I’m around 2Km’s away from them in a dense urban area.
But when running the sketch the first times, I had no results what so ever.

One of the configurations options for LoraWan is what is called a Spread Factor that, in a simplest way, exchanges range with on-air time for transmission, being SF7 the fastest speed and shorter range and SF12 the slowest speed and higher range. The sketch default value for the sprea factor was SF7, and changing it to SF12:

 ...
    // TTN uses SF9 for its RX2 window.
    LMIC.dn2Dr = DR_SF9;

    // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
    LMIC_setDrTxpow( DR_SF12 ,14);

    // Start job
    do_send(&sendjob);

With SF12 the message started be received and the sequence numbers of the messages received where continuous, so no lost messages.

Dropping to SF11, also worked fine, and the message sequence received and shown on the TTN Dashboard where still continuous.

At SF10, some of the messages where lost, almost 75% of them. In this case, arranging the antenna position (to exactly vertical) and placement did alter the reception successes.

Processing received data
After the data is at the TTN backend there are several ways of getting it. For reference on the TTN site there are instructions in how to access the data.

Crash course on Lora
For further information the next one hour video is a great starting point:

The slides for the presentation are available here:

https://www.dropbox.com/s/87htha4dq5b32wa/ttn-lora-crash-course.pdf?dl=0

Cloud based deployment for IOT devices

Following up on my previous post Cloud based CI with Platformio, after we have the build output from the Continuous Integration process, we are able now to deploy to our devices.

This last deploy phase of the cycle Develop, CI, Deliver using Cloud infrastructure, only makes sense to devices that are powerful enough to have permanent or periodic network connectivity and have no problems or limitations with power usage, bandwidth, are in range and are able to remotely be updated.

In reality this means that most low power devices, devices that use LPWAN technologies like LoraWan or SigFox, devices that are sleeping most of the time and are battery powered are not able to be easily updated. For these cases the only solution is really out of band management by upgrading locally the device.

So the scope of this post is just to simply build a cloud based process to allow ESP8266 devices to get update firmware from the CI output. On it’s simplest form all we need is to create a web server, make the firmware available at the server and provide the URL for OTA updates to the ESP8266 that use the HTTP updater.

One can already use from the squix blog the PHP file to be deployed on PHP enabled web server that delivers the latest builds for devices requesting over the air updates.

Openshift PaaS Cloud Platform

The simplest way of making the Squix PHP page available on the cloud is to use the great Platform as a Service Openshift by RedHat. The free tier allows to have three applications (gears) available and the sign up is free. At sign up time we need to name our own domain suffix so that, for example I choose primal I’ll have URL’s such as application-primal.rhcloud.com.

Openshift offers a series of pre-configured applications ready to be deployed such NodeJs, Java, Python and PHP.

Openshift preconfigured platforms

So after sign up, all we need is to create a new application based on the PHP 5.4 template, give it an URL (it can be the default PHP), and that’s it: we have our PHP enabled web server.

Deploying code to Openshift

To deploy code to Openshift we use the Git tool for manipulating our application repository on the PaaS cloud platform.

So we must first clone our repository locally, modify it and then upload the changes.

For obtaining the repository URL and connection details, we must first setup our local machine with the rhc command line tool and upload our public SSH key to the Openshift servers:

 [pcortex@pcortex:~]$ gem install rhc

If the gem tool is not available, first install Ruby (sudo pacman -S ruby).

We then setup the rhc tool with the command rhc setup. Complete details here.

The command rhc apps should list now our Openshift applications:

[pcortex@pcortex:~]$ rhc apps
nodejs @ http://nodejs-primal.rhcloud.com/ (uuid: 9a72d50252d09a72d5)
-----------------------------------------------------------------------------
  Domain:     primal
  Created:    Aug 26  3:43 PM
  Gears:      1 (defaults to small)
  Git URL:    ssh://9a72d50252d09a72d5@nodejs-primal.rhcloud.com/~/git/nodejs.git/
  SSH:        9a72d50252d09a72d5@nodejs-primal.rhcloud.com
  Deployment: auto (on git push)

  nodejs-0.10 (Node.js 0.10) 
----------------------------             
    Gears: 1 small 
                    
php @ http://php-primal.rhcloud.com/ (uuid: c0c157c41271b559e66) 
-----------------------------------------------------------------------                    
  Domain:     primal          
  Created:    12:16 PM  
  Gears:      1 (defaults to small) 
  Git URL:    ssh://c0c157c41271b559e66@php-primal.rhcloud.com/~/git/php.git/                
  SSH:        c0c157c41271b559e66@php-primal.rhcloud.com 
  Deployment: auto (on git push) 

  php-5.4 (PHP 5.4)
  -----------------
    Gears: 1 small

You have access to 2 applications.

We pull now the remote repository to our machine:

[pcortex@pcortex:~]$ mkdir Openshift
[pcortex@pcortex:~]$ cd Openshift
[pcortex@pcortex:Openshift]$ git clone ssh://c0c157c41271b559e66@php-primal.rhcloud.com/~/git/php.git/
[pcortex@pcortex:Openshift]$ cd php
[pcortex@pcortex:php]$ wget https://raw.githubusercontent.com/squix78/esp8266-ci-ota/master/server/firmware.php 

We should now change the PHP file so it uses our repository to bring up our firmware:

 <?php
    $githubApiUrl = "https://api.github.com/repos/squix78/esp8266-ci-ota/releases/latest";
    $ch = curl_init();

And then it’s just to commit the change to Openshift:

[pcortex@pcortex:php]$ git add firmware.php
[pcortex@pcortex:php]$ git commit -m "Added firmware.php file"
[pcortex@pcortex:php]$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 924 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Stopping PHP 5.4 cartridge (Apache+mod_php)
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Building git ref 'master', commit a72403a
remote: Checking .openshift/pear.txt for PEAR dependency...
remote: Preparing build for deployment
remote: Deployment id is 8fdecb3f
remote: Activating deployment
remote: Starting PHP 5.4 cartridge (Apache+mod_php)
remote: Application directory "/" selected as DocumentRoot
remote: -------------------------
remote: Git Post-Receive Result: success
remote: Activation status: success
remote: Deployment completed with status: success
To ssh://php-primal.rhcloud.com/~/git/php.git/
   321e48b..a72403a  master -> master

And that’s it: the link for HTTP OTA is available at http://php-primal.rhcloud.com/firmware.php

Final notes:

With the above firmware.php file we can deliver a single firmware file to any device that calls the page.

But a better solution is needed if we want to:

– Deliver multiple firmware files to different devices
– Deliver different versions of firmware files, for example be able to lock a specific version to some devices
– Know which devices have updated
– Know which version of firmware the devices are running

and of course, add some security.