Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 4: Installing Grafana and configuring

Our software stack installation ends with configuring and installing Grafana. Ubuntu installation instructions are at this Grafana documentation link..

Installation is as easy as to download and install the latest Grafana dashboard version:

root@server:~# wget https://grafanarel.s3.amazonaws.com/builds/grafana_4.1.2-1486989747_amd64.deb
root@server:~# sudo dpkg -i grafana_4.1.2-1486989747_amd64.deb

In my case, the above instructions where enough to install successfully the software.

After installing if we will access the Dashboard through a reverse proxy, check out my previous post to configure correctly the Grafana server: Grafana Reverse Proxy

We can now start the Grafana server but if the server is exposed to the public internet the first thing to do is to change the default admin user password to something safe, or better yet, create a new admin user with a strong password and delete the admin default account.

We should press the top left icon, choose admin and then Global users. We can now select the Admin user and change the default password:

Here we also can create a new admin account, which is my recommendation.

Data source configuration:

Dashboard data provides from data sources that we configure on  Grafana. We can configure several data sources that we will used to fetch data to feed to our dashboards and graphs.

In our case we will configure a single InfluxDB datasource. Note that we didn’t defined any authentication for the InfluxDB server, so no access credentials are needed yet, but we should set ones as soon as possible.

Since Grafana and InfluxDB are running on the same server we use the base URL http://localhost:8086. Make sure that the connection type is set as proxy.

After setting the datasource name and datasource database, press Save & Test and it should report success.

Initial Dashboard configuration

We are now able to create a basic first dashboard by building some charts/graphs based on the previous created data source.

Press the New Dashboard button to create a new dashboard. In case that you don’t have a screen as the above screen shot, just press the top left Grafana Icon, select Dashboards and then New.

The following screen should appear where we can add graphical panels to show our data. We should the way that we want to show our data, by selecting the Graph type. The selected graph type should reflect immediately on the panel below. To edit the panel source data we should press the panel title and a pop-up window will appear, and then we press Edit.

We are now able to edit the associated queries that will fill the panel with data. Associated with the panel we can have multiple queries for the source data. In the default case a default query named A is already set up. We just need to change our measurement field to the correct one, which in our case could be Temperature or heap, based on the previous post (InfluxDB data configuration)

.

We need now to press the Select Measurement and a drop down box with the available measurement should appear. We select the one that we want and data should now appear on the above graph.

From now on is just a bit of perfecting things out like giving a sound name to the panel in the General tab and at the end pressing the Save icon on the top of the screen.

Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 1: Installing

A more or less standard software stack used for control, processing and displaying data, has emerged that is almost used by everyone when hacking around on Arduinos, ESP8266, Raspeberry Pi’s and other plethora of devices. This “standard” software stack basically always includes the MQTT protocol, some sort of Web based services, Node-Red and several different cloud based services like Thingspeak, PubNub and so on. For displaying data locally, solutions like Freeboard and Node-Red UI are a great resources, but they only shows current data/status, and has no easy way to see historical data.

So on this post I’ll document a software stack based on Node-Red, InfluxDB and Graphana that I use to store and display data from sensors that I have around while keeping and be able to display historical memory of data. The key asset here is the specialized time-series database InfluxDB that keeps data stored and allows fast retrieval based on time-stamps: 5 minutes ago, the last 7 days, and so on. InfluxDB is not the only Time-Series database that is available, but it integrates directly with Grafana the software that allows the building of dashboards based on stored data.

I’m running an older version of InfluxDB on my ARM based Odroid server, since a long time ago, ARM based builds of InfluxDB and Grafana where not available. This is now not the case, but InfluxDB and Grafana have ARM based builds so we can use them on Raspberry PI and Odroid ARM based boards.

So let’s start:

Setting up Node-Red with InfluxDB
I’ll not detail the Node-Red installation itself since it is already documented thoroughly everywhere. To install the supporting nodes for InfluxDB we need to install the package node-red-contrib-influxdb

cd ~/.node-red
npm install  node-red-contrib-influxdb

We should now restart Node-red to assume/detect the new nodes.

Node Red InfluxDB nodes

Installing InfluxDB
We can go to the InfluxDB downloads page and follow the installation instructions for our platform. In my case I need the ARM build to be used on Odroid.

cd ~
wget https://dl.influxdata.com/influxdb/releases/influxdb-1.2.0_linux_armhf.tar.gz
tar xvzf influxdb-1.2.0_linux_armhf.tar.gz

The InfluxDB engine is now decompressed in the newly created directory influxdb-1.2.0-1. Inside this directory there are the directories that should be copied to the system directories /etc, /usr and /var:

sudo -s
cd /home/odroid/influxdb-1.2.0-1

Copy the files to the right location. I’ve added the -i switch just to make sure that I don’t overwrite nothing.

root@odroid:~/influxdb-1.2.0-1# cp -ir etc/ /etc
root@odroid:~/influxdb-1.2.0-1# cp -ir usr/* /usr
root@odroid:~/influxdb-1.2.0-1# cp -ir var/* /var

We need now to create the influxdb user and group:

root@odroid:~/influxdb-1.2.0-1# groupadd influxdb
root@odroid:~/influxdb-1.2.0-1# useradd -M -s /bin/false -d /var/lib/influxdb -G influxdb influxdb

We need now to change permissions on /var/lib/influxdb:

cd /var/lib
chown influxdb:influxdb influxdb

We can now set up the automatic start up script. On the directory /usr/lib/influxdb/scripts there are scripts for the systemctl based Linux versions and init.d based versions that is my case. So all I have to do is to copy the init.sh script from that directory to the /etc/init.d and link it to my run level:

root@odroid:~# cd /etc/init.d
root@odroid:/etc/init.d# cp /usr/lib/influxdb/scripts/init.sh influxdb
root@odroid:/etc/init.d# runlevel
 N 2
root@odroid:/etc/init.d# cd /etc/rc2.d
root@odroid:/etc/init.d# ln -s /etc/init.d/influxdb S90influxdb

And that’s it. We can now start the database with the command /etc/init.d/influxdb start

root@odroid:~# /etc/init.d/influxdb start
Starting influxdb...
influxdb process was started [ OK ]

We can see the influxdb logs at /var/log/influxdb and start using it through the command line client influx:

root@odroid:~# influx
Connected to http://localhost:8086 version 1.2.0
InfluxDB shell version: 1.2.0
> show databases
name: databases
name
----
_internal

> 

Installing Grafana
We need now to download Grafana. In my case for Odroid since it is an ARMv7 based processor, no release/binary is available.
But a ARM builds are available on this GitHub Repository: https://github.com/fg2it/grafana-on-raspberry for both the Raspberry Pi and other ARM based computer boards, but only for Debian/Ubuntu based OS’s. Just click on download button on the description for the ARMv7 based build and at the end of the next page a download link should be available:

odroid@odroid:~$ wget https://bintray.com/fg2it/deb/download_file?file_path=main%2Fg%2Fgrafana_4.1.2-1487023783_armhf.deb -O grafana.deb

And install:

root@odroid:~# dpkg -i grafana.deb
Selecting previously unselected package grafana.
(Reading database ... 164576 files and directories currently installed.)
Preparing to unpack grafana.deb ...
Unpacking grafana (4.1.2-1487023783) ...
Setting up grafana (4.1.2-1487023783) ...
Installing new version of config file /etc/default/grafana-server ...
Installing new version of config file /etc/grafana/grafana.ini ...
Installing new version of config file /etc/grafana/ldap.toml ...
Installing new version of config file /etc/init.d/grafana-server ...
Installing new version of config file /usr/lib/systemd/system/grafana-server.service ...

Set the automatic startup at boot:

root@odroid:~# ln -s /etc/init.d/grafana-server /etc/rc2.d/S91grafana-server

And we can now start the server:

root@odroid:~# /etc/init.d/grafana-server start
 * Starting Grafana Server    [ OK ] 
root@odroid:~# 

We can now access the server at the address: http://server:3000/ where server is the IP or DNS name of our ODroid or RPi.

Conclusion:
This ends the installation part for the base software.

The following steps are:

  • Create the Influx databases –
  • Receive data from sensors/devices and store it on the previously created database
  • Configure and create Grafana data sources and dashboards
  • Add some plugins to Grafana