Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 2: Database configuration and data collection

On the previous post we’ve installed and the base software for our Grafana based dash board.

We need now to configure our InfluxDB database and Node Red to start collecting data.

Configuring InfluxDB:
Detailed instructions for configuring an InfluxDB database are on this InfluxDB documentation link..

The main concepts that we need to be aware when using the InfluxDB is that record of data has a time stamp, a set of tags and a measured value. This allows, for example to create a value named Temperature and tag it depending on the source sensor:

Temperature: Value=22.1 , Sensor=Kitchen
Temperature: Value=21.9 , Sensor=Room1

This allows to process all the data or only process data based on a certain tag or tags. Values and tags can be created on the fly without previously define them, which is a bit different from standard RDBMS engines.

Creating an InfluxDB database:
To create the database, we need to access the machine hosting the InfluxDB server and execute the command influx:

odroid@odroid:~$ influx
Connected to http://localhost:8086 version 1.2.0
InfluxDB shell version: 1.2.0
> create database SensorData
> show databases
name: databases
name
----
_internal
SensorData

> 

Now we have our database created and I’ve named SensorData. To make an example with the above temperature data we can do the following:

> insert Temperature,Sensor=kitchen value=22.1
ERR: {"error":"database is required"}

Note: error may be due to not setting a database or retention policy.
Please set a database with the command "use " or
INSERT INTO . 
> use SensorData
Using database SensorData
> 

As we can see we need first to select the database where we are going to insert data with the command use SensorData:

> use SensorData
Using database SensorData
> insert Temperature, Sensor=kitchen value=22.1
ERR: {"error":"unable to parse 'Temperature, Sensor=kitchen value=22.1': missing tag key"}

> insert Temperature,Sensor=kitchen value=22.1
> insert Temperature,Sensor=Room1 value=21.9
> select * from Temperature
name: Temperature
time                Sensor  value
----                ------  -----
1487939008959909164 kitchen 22.1
1487939056354678353 Room1   21.9

Note that we can’t use spaces between the Measure name and the tags. The correct syntax is as follows:

 insert MeasureName,tag1=t1,tag2=t2,...   value1=val1,value2=val2,value3=val3,....

Also note that no DDL (data definition language) was used to create the tags or the measured value, we’ve just inserted data for our measurement with the our tags and value(s) without the need of previously define the schema.

Configuring Node-Red
Since we now have a database we can configure the InfluxDB Node Red nodes to store data onto the database:

There are two types of InfluxDB nodes, one that has an Input and Output and other that only has Input. The former is for making queries to the database where we provide on the input node the query, and on the output the results are returned. The later is for storing data only onto the database.
For both nodes we need to configure an InfluxDB server:

InfluxDB Server Configuration

We need to press the Pen icon right next to the server to add or reconfigure a new InfluxDB server:

InfluxDB server

A set of credentials are required, but since I’ve yet configured security, we can just put admin/admin as username and password. In a real deployment we must activate security.

From now on it is rather simple. Referring to InfluxDB node configuration screenshot (Not the InfluxDB server configuration) we have a configuration field named Measurement. This is our measure name that we associate a value. Picking up on the above example with the Insert command it will be Temperature, for example.

Now if the msg.payload provided has input to the node is a single value, let’s say 21, this is equivalent to do:

Insert Temperature value=12

We other formats for msg.payload that allows to associate tags and measures. Just check the Info tab for the node.

Simple example:

The following flow shows a simple example of a value received through MQTT, in this case the free heap from one of my ESP8266 and its storage in InfluxDB:

Sample Flow

[{"id":"20bec5de.8881c2","type":"mqtt in","z":"ced40abb.3c92e","name":"Heap","topic":"/outbox/ESP12DASH/Heap","qos":"2","broker":"2a552b3c.de8d2c","x":83.16668701171875,"y":206.41668701171875,"wires":[["e0d9c912.8c57f8","876fb151.6f2fa"]]},{"id":"876fb151.6f2fa","type":"debug","z":"ced40abb.3c92e","name":"","active":true,"console":"false","complete":"false","x":408.5,"y":177,"wires":[]},{"id":"e0d9c912.8c57f8","type":"influxdb out","z":"ced40abb.3c92e","influxdb":"bbd62a93.1a7108","name":"","measurement":"heap","x":446.1666717529297,"y":224.58335876464844,"wires":[]},{"id":"2a552b3c.de8d2c","type":"mqtt-broker","broker":"192.168.1.17","port":"1883","clientid":"node-red","usetls":false,"verifyservercert":true,"compatmode":true,"keepalive":15,"cleansession":true,"willQos":"0","birthQos":"0"},{"id":"bbd62a93.1a7108","type":"influxdb","z":"","hostname":"127.0.0.1","port":"8086","protocol":"http","database":"SensorData","name":"ODroid InfluxDB"}]

We can see with this flow the data stored in InfluxDB:

> select * from heap;
name: heap
time                value
----                -----
1487946319638000000 41600
1487946440913000000 41600
1487946562206000000 41600
1487946683474000000 41600
1487946804751000000 41600
1487946926061000000 41600
1487947047309000000 41616
1487947168594000000 41600

Now we have data that we can graph with Grafana, subject of my next posts.

Advertisements

2 thoughts on “Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 2: Database configuration and data collection

  1. Pingback: Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 1: Installing | Primal Cortex's Weblog

  2. Pingback: Setting up a Grafana Dashboard using Node-Red and InfluxDB – Part 4: Installing Grafana and configuring | Primal Cortex's Weblog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s