Cloud based deployment for IOT devices

Following up on my previous post Cloud based CI with Platformio, after we have the build output from the Continuous Integration process, we are able now to deploy to our devices.

This last deploy phase of the cycle Develop, CI, Deliver using Cloud infrastructure, only makes sense to devices that are powerful enough to have permanent or periodic network connectivity and have no problems or limitations with power usage, bandwidth, are in range and are able to remotely be updated.

In reality this means that most low power devices, devices that use LPWAN technologies like LoraWan or SigFox, devices that are sleeping most of the time and are battery powered are not able to be easily updated. For these cases the only solution is really out of band management by upgrading locally the device.

So the scope of this post is just to simply build a cloud based process to allow ESP8266 devices to get update firmware from the CI output. On it’s simplest form all we need is to create a web server, make the firmware available at the server and provide the URL for OTA updates to the ESP8266 that use the HTTP updater.

One can already use from the squix blog the PHP file to be deployed on PHP enabled web server that delivers the latest builds for devices requesting over the air updates.

Openshift PaaS Cloud Platform

The simplest way of making the Squix PHP page available on the cloud is to use the great Platform as a Service Openshift by RedHat. The free tier allows to have three applications (gears) available and the sign up is free. At sign up time we need to name our own domain suffix so that, for example I choose primal I’ll have URL’s such as

Openshift offers a series of pre-configured applications ready to be deployed such NodeJs, Java, Python and PHP.

Openshift preconfigured platforms

So after sign up, all we need is to create a new application based on the PHP 5.4 template, give it an URL (it can be the default PHP), and that’s it: we have our PHP enabled web server.

Deploying code to Openshift

To deploy code to Openshift we use the Git tool for manipulating our application repository on the PaaS cloud platform.

So we must first clone our repository locally, modify it and then upload the changes.

For obtaining the repository URL and connection details, we must first setup our local machine with the rhc command line tool and upload our public SSH key to the Openshift servers:

 [pcortex@pcortex:~]$ gem install rhc

If the gem tool is not available, first install Ruby (sudo pacman -S ruby).

We then setup the rhc tool with the command rhc setup. Complete details here.

The command rhc apps should list now our Openshift applications:

[pcortex@pcortex:~]$ rhc apps
nodejs @ (uuid: 9a72d50252d09a72d5)
  Domain:     primal
  Created:    Aug 26  3:43 PM
  Gears:      1 (defaults to small)
  Git URL:    ssh://
  Deployment: auto (on git push)

  nodejs-0.10 (Node.js 0.10) 
    Gears: 1 small 
php @ (uuid: c0c157c41271b559e66) 
  Domain:     primal          
  Created:    12:16 PM  
  Gears:      1 (defaults to small) 
  Git URL:    ssh://                
  Deployment: auto (on git push) 

  php-5.4 (PHP 5.4)
    Gears: 1 small

You have access to 2 applications.

We pull now the remote repository to our machine:

[pcortex@pcortex:~]$ mkdir Openshift
[pcortex@pcortex:~]$ cd Openshift
[pcortex@pcortex:Openshift]$ git clone ssh://
[pcortex@pcortex:Openshift]$ cd php
[pcortex@pcortex:php]$ wget 

We should now change the PHP file so it uses our repository to bring up our firmware:

    $githubApiUrl = "";
    $ch = curl_init();

And then it’s just to commit the change to Openshift:

[pcortex@pcortex:php]$ git add firmware.php
[pcortex@pcortex:php]$ git commit -m "Added firmware.php file"
[pcortex@pcortex:php]$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 924 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Stopping PHP 5.4 cartridge (Apache+mod_php)
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Building git ref 'master', commit a72403a
remote: Checking .openshift/pear.txt for PEAR dependency...
remote: Preparing build for deployment
remote: Deployment id is 8fdecb3f
remote: Activating deployment
remote: Starting PHP 5.4 cartridge (Apache+mod_php)
remote: Application directory "/" selected as DocumentRoot
remote: -------------------------
remote: Git Post-Receive Result: success
remote: Activation status: success
remote: Deployment completed with status: success
To ssh://
   321e48b..a72403a  master -> master

And that’s it: the link for HTTP OTA is available at

Final notes:

With the above firmware.php file we can deliver a single firmware file to any device that calls the page.

But a better solution is needed if we want to:

– Deliver multiple firmware files to different devices
– Deliver different versions of firmware files, for example be able to lock a specific version to some devices
– Know which devices have updated
– Know which version of firmware the devices are running

and of course, add some security.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s